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Abstract
We investigate an extension to the phase shift formalism for calculating
one-loop determinants. This extension is motivated by requirements of the
computation of Z-string quantum energies in D = 3+1 dimensions. A subtlety
that seems to imply that the vacuum polarization diagram in this formalism is
(erroneously) finite is thoroughly investigated.

PACS numbers: 03.65.Sq, 03.70.+k, 11.27.+d

(Some figures in this article are in colour only in the electronic version)

1. Introduction and motivation

Z-strings were first discovered as solutions to the classical field equations of the electroweak
standard model by Nambu [1] in the context of bound pairs of magnetic monopoles. Later on
they were rediscovered—as independent objects in their own right—by Vachaspati [2].

The main point of interest in our study of Z-strings is their stability. If they are stable,
they might be relevant for a variety of reasons: they would be the only static solitons in
the standard model, networks of Z-strings might play an important role in baryogenesis
[3], and they would be a possible source of the primordial magnetic field. For a general
overview of applications and properties of Z-strings along with a large collection of references
cf [4].

Because there are no configurations with nontrivial topology in the electroweak model,
stability of Z-strings is only possible on energetic grounds. Classically, Z-strings are unstable
for the physical values of the parameters of the electroweak model. Since fermions bind
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strongly to the core of the Z-string, it may be possible to achieve stability by occupying
N fermionic bound states that are generated in the background of the Z-string so that the
resulting total energy of the system is less than the energy of N free fermions. A consistent h̄

expansion then requires the inclusion of the contribution of the fermionic determinant to the
energy.

In D = 3 + 1 dimensions, renormalization issues make the investigation of the Z-string
difficult since it is non-perturbative. Investigations have either failed to draw convincing
conclusions [5] or focused on D = 2 + 1 dimensions [6, 7]. Here we will discuss attempts to
solve the problems posed by these earlier investigations.

The structure of this paper is as follows: in section 2, we discuss our method for computing
the fermion determinant and the problems posed by the Z-string for our approach. We discuss
the possible solutions in D = 2 + 1 dimensions and the extension necessary for D = 3 + 1
dimensions. In section 3, we investigate whether the extension proposed for the Z-string works
in the case of a simple boson model. Problems involving the second-order Born approximations
are discussed and resolved by comparing different formulations of our approach. In section 4
we present some conclusions and an outlook.

2. Technical prerequisites

The Z-string has the following structure:

φ =
(

φ+

φ0

)
= v

(
0

fH (ρ) eiϕ

)
, g �Z = ϕ̂

ρ
2fG(ρ), (1)

with φ being the iso-spinor Higgs field and �Z the only non-vanishing component of the
SU(2) × U(1) gauge fields. As usual, ρ and ϕ denote the radial and angular coordinate in the
plane perpendicular to the Z-string and v is the vacuum expectation value of the Higgs field.
The string configuration is defined in two spatial dimensions. It is translationally invariant
in any additional space coordinate, which we call flat dimension(s). Finite classical energy
(for D = 2 + 1, or classical energy per unit length in D = 3 + 1) requires both fH → 0 and
fG → 0 for ρ → 0. Furthermore, the kinetic energy of the Higgs must fall off sufficiently
fast at large distances,

|(∂µ − igZµ)φ|2 = O(1/ρ2+ε), ε > 0 for ρ → ∞. (2)

In particular, this implies that φ†φ = |fH |2 → 1 and fG → 1 at ρ → ∞. The condition
(2) clearly mixes different orders in perturbation theory (PT) and already indicates that if one
sticks to a fixed order in PT one will end up with IR divergent quantities. In the systematic
expansion of arbitrarily many fermion species and at next to leading order in h̄, the quantum
correction to the energy, i.e. the vacuum polarization energy, may be computed from the
fermion determinant in the background of the potential V (�x) that is generated by the string.
In turn, this determinant is given in terms of scattering data from this potential [8]. This
formulation is effective for renormalization because the nth order contribution in the Born
expansion equals the Feynman diagram for the fermion loop with n insertions of V. To render
the integral over scattering data finite, we subtract enough Born terms and add them back in
as Feynman diagrams. The renormalization of the latter is adopted from perturbation theory
and is standard. Hence the vacuum polarization energy is given by

Evac = 1

2

∑
b.s.

f1
(
ωb.s.

j

) − 1

2π

∫
dk f2(k)

∑
M

[
δM(k) −

N∑
n=1

δ
(n)
M (k)

]
+

N∑
n=1

E
(n)
FD + ECT, (3)
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where ωb.s.
j denotes the fermion bound state energies, δM the (full) phase shift in angular

momentum channel M, δ
(n)
M its nth Born approximation, N denotes the number of Born

approximations necessary to render the momentum integral finite, E
(n)
FD is the energy

contribution computed from Feynman diagrams with n external legs and ECT is the energy
resulting from the counter terms. The functions f1,2 vary with the number of flat dimensions
[9]. For the Z-string in D = 2 + 1, the number of flat dimensions is 0 and we obtain
f1(ω) = m − |ω|, f2(k) = −k/

√
k2 + m2. For D = 3 + 1, the number of flat dimensions is

1 and we obtain f1(ω) = (ω2(1 + ln(ω2/m2)) − m2)/(4π), f2(k) = (k/2π) ln(1 + k2/m2).
Of course, the Feynman diagram and counter term contribution also differ for D = 2 + 1
and D = 3 + 1, but these expressions are well known and will not be repeated here. When
computing the Born approximation for scattering in the Z-string background, one encounters
two problems: the full scattering problem is decomposed into distinct channels of finite size.
The decomposition of the full scattering problem utilizes the generalized axial symmetry of
the Hamiltonian h in a Z-string background

[h, J3 − nT3γ5] = 0, (4)

where J3 is the fermionic angular momentum, T3 is an isospin generator and n is the (integer)
flux of the Z-string. Since γ5 does not commute with the free Hamiltonian h0, we have
[h0, J3 − nT3γ5] �= 0. Thus, in contrast to standard problems, the symmetries of the problem
with background field are not a subset of the symmetries of the free problem, but instead
are incompatible with them. Thus, the setup for perturbation theory (which considers the
Hamiltonian hε = h0 + εV ) has no axial symmetry at all. The second problem is related
to the aforementioned IR problems of strings. Only special (gauge invariant) combinations
of Feynman diagrams of different perturbative orders result in IR finite quantities. However,
Born approximations correspond to sums of Feynman diagrams of definite order in PT and
hence most likely will suffer from IR divergences.

The case of D = 2+1 is special. The only counter term that has a divergent co-efficient—
|φ|2—is of a definite order in PT. In this case, we are able to use gauge invariance to argue that
any background that has the same |φ|2 will suffer from the same divergence and hence the Born
approximation for some other fake background can be used to subtract the large-momentum
tails of the full phase shifts. So we can choose a background that has J3 as a symmetry
generator but no IR divergences [7].

In D = 3 + 1 this procedure does not work because we now have more counter terms with
divergent coefficients that mix different orders of PT. Furthermore, since there are additional
constraints on the profiles, it is not clear how to construct fake background solutions which
have no winding and thus the same symmetry as the free Hamiltonian—if it is possible at all.

At this point it is worthwhile to remember why we want to subtract Born approximations
in the first place: first, we have to subtract off the large-momentum behaviour of the summed
phase shifts in order to ensure UV convergence of the momentum integral. Second, with
Born approximations we know exactly what to add back in so that the overall value of
the determinant does not change, namely the corresponding Feynman diagrams. Keeping
these reasons in mind, we can extend our formalism substantially: instead of subtracting
the Born approximations of the original theory with the original background fields, we can
subtract Born approximations from an arbitrary theory as long as (a) we add back in the
Feynman diagrams from the same theory and (b) that theory has the same divergences (e.g. in
dimensional regularization) as the original theory. In the remainder of this paper, we test this
proposition.
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Figure 1. The left panel shows k ln(1 + k2/m2)
∑

M
1
π

[δM(k; σ1) − δ
(1)
M (k; σ1) − δ

(2)
M (k; σi)]

for i = 1, 2. The right panel shows the decomposition furthermore into k ln(1 + k2/m2)∑
M

1
π

[δM(k; σ1) − δ
(1)
M (k; σ1)] and k ln(1 + k2/m2)

∑
M

1
π

δ
(2)
M (k; σi).

3. Fake subtractions

We consider two bosonic theories in D = 3 + 1 that differ in the string-like background
potential they are coupled to

L1,2 = 1

2
∂µφ∂µφ − m2

2
φ2 − 1

2
σ1,2φ

2 (5)

with σ1(�x) = α1 exp
(−ρ2

/
w2

1

)
and σ2(�x) = α2 exp(−ρ/w2). Demanding identical UV

divergences requires∫
d3x σ1(�x) =

∫
d3x σ2(�x) and

∫
d3x σ 2

1 (�x) =
∫

d3x σ 2
2 (�x). (6)

If our proposal of a fake Born subtraction works, the renormalized vacuum polarization energy
in (3) should be the same, whether we use the original model 1 or its fake version 2 for the
subtraction. Since the bound states are not affected by the subtraction, it is sufficient to
consider the part

Ẽi = 1

2

∫
dk k ln

(
1 +

k2

m2

)∑
M

1

π

[
δM −

2∑
n=1

δ
(n)
M (k; σi)

]
+

2∑
n=1

E
(n)
FD,ren(k; σi), (7)

where the full phase shift is always computed in the original model 1, while the subtraction is
made with model 1 Born approximations (Ẽ1) or with the fake model 2 Born approximations
(Ẽ2), respectively. Our proposal amounts to claiming that Ẽ1 = Ẽ2.

It can be shown, using a Bessel function identity [8], that
∑∞

M=0 δ
(1)
M (k; σi) ∝ 〈σi〉kq−2

where q is the number of non-flat spatial dimensions. By numerical calculation we can
furthermore show that

1

2

∫
dk k ln

(
1 +

k2

m2

) ∑
M

1

π

[
δ

(2)
M (k; σ2) − δ

(2)
M (k; σ1)

] = E
(2)
FD,ren(σ2) − E

(2)
FD,ren(σ1). (8)

This shows that as long as the renormalized energy is finite, both ways of subtracting Born
approximations lead to the same result. In the left panel of figure 1 we see that the renormalized

4
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Figure 2. The left panel shows S
(2)
N (k) = ∑N

M=0 δ
(2)
M (k; σ2) for different values of k, the right

panel shows k2S
(2)
N (k) plotted versus N/k.

energy is going to be finite, since there is no large-momentum tail that might impede the
existence of the momentum integral. The right panel, however, shows something troubling:
ordinarily, we would think that (7) with just the first term of the Born series subtracted still
contains the log-divergent second-order Feynman diagram. The Feynman series then suggests
the same large k behaviour for the integrand of (7) when the expression in square brackets
is replaced by the second-order term of the Born series. From the right panel of figure 1,
one can clearly see that this expectation is wrong: both contributions to the integrand in (7)
fall off faster than 1/k3 individually. At first sight this indicates that the resulting integral
would be finite [10, 11]. This is in strong contradiction to the fact the equivalent second-order
Feynman diagram is indeed UV divergent. As we will demonstrate in the rest of this paper the
catch comes from an incorrect treatment of the non-uniformly convergent sum and integral
in (7).

First of all, it is worth noting that the second-order Born approximation phase shifts are
not small by themselves, but they sum up to something small, cf figure 2. Secondly, it is
worthwhile to recall the formulation of functional determinants in terms of scattering data
[12, 13]. Strictly this is possible only in the upper half of the complex k plane and not on
the real k-axis. Furthermore, that derivation also suggests that instead of integrating over a
channel sum, one should integrate over momentum first to get a per-channel contribution to
the energy and then sum over channels. The analytic properties of scattering data ensure
that the contribution of a prescribed channel to the vacuum polarization energy can be
identically computed as an integral over real or imaginary momentum. We have verified
this result numerically. Of course, the corresponding integrands are not expected to be
identical. Consequently, the momentum integrands obtained from summing over channels
first are expected to be different as well. The momentum integrand of the second-order Born
approximation phase shift1 on the imaginary axis shows exactly the expected 1/t fall off2 for a
logarithmically divergent integral, cf left panel of figure 3. In the right panel, one can see that
for all channels the second-order Born approximations on the imaginary axis have the same

1 More precisely one should talk about the imaginary parts of the logarithm of the Jost function, because the concept
of a phase shift cannot be extended to the complex k plane.
2 The momentum on the imaginary axis is denoted t, i.e., k = it with t real.
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M δ̃
(2)
M (t; σi) (which is the expression on the imaginary axis

corresponding to k ln(1 + k2/m2)
∑

M δ
(2)
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The right panel shows
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M=0 δ̃
(2)
M (t; σ2) plotted versus N for different values of t.
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Figure 4. The left panel shows
∫

dk k ln(1 + k2/m2)δ
(2)
M (k)—denoted as ‘real axis’—and∫

dt t δ̃
(2)
M (t)—denoted as ‘imaginary axis’—for both σ1 and σ2 as potentials. Note that for larger

values of M, the curves for σ1,2 coincide and show the expected 1/M fall off. The right panel
shows the momentum integrand for both real and imaginary axis for channel M = 10.

sign and no cancellations are present. Moreover, our general experience together with our
numerical investigations in this particular case suggest that the sum over channels is uniformly
convergent and we can freely interchange the order of channel summation and momentum
integral.

The left panel of figure 4 shows clearly that the problem on the real axis is the interchange
of integration and summation, because by integrating first over momentum and then summing
over channels we obtain the expected logarithmic divergence, whereas in the other order the
result is apparently finite. The right panel shows how the (identical) values on the real and
imaginary axis are obtained—on the imaginary axis we see a monotonic approach to the final
value, while on the real axis we see a zero crossing. This zero is not accidental, but rather a

6



J. Phys. A: Math. Theor. 41 (2008) 164049 O Schröder et al
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Figure 5. The left panel shows another scaling rule; the most important point is that the zero
crossing moves outwards on the real k-axis as M increases. The right panel compares the integrands
of the per-channel contribution to the energy with zero and one flat dimension to the integrand of
the sum rule.

consequence of the fundamental sum rule∫
dk kδ

(2)
l (k) = 0, (9)

proved in [14]. On the imaginary axis no corresponding sum rule exists. The consequence of
this zero crossing can be seen in figure 5. From the right panel of this figure one can see clearly
that while for zero flat dimensions the dominant contribution to the per-channel contribution
of the energy comes from the low-k region, for one flat dimension the dominant contribution
comes from the region k · w > M , where w is the characteristic width of the potential. This
result explains why the interchange of summation and integration fails on the real axis for one
flat dimension (and not for zero); if one integrates first over momentum, one obviously is able
to catch the dominant large-momentum contribution. If one sums over channels first, however,
one finds that for M > k · w the phase shifts drop off exponentially. Hence it seems sufficient
to sum up to Mmax ≈ (2 . . . 3)k · w. Since the momentum integral will be terminated at some
finite value kmax, this procedure obviously misses important contributions from channels with
M > Mmax. Hence, integration and summation cannot be interchanged3. Another piece of
evidence is that the momentum integrand obtained from summing over channels first is—as
far as we can tell from our numerical investigations—strictly positive for any prescribed finite
momentum, which is in direct contradiction to the sum rule from (9).

4. Conclusions

We have shown that for finite quantities one can successfully replace Born approximations in
one theory by Born approximations from another as long as the Feynman diagrams show the

3 During our investigation of the second-order Born approximation phase shifts, we noted that k3δ
(2)
M (k) is not

a function of k and M individually, but is just a function of k/M (plus corrections, but those are very small for
M > 1). This allows to map

∑
M δ

(2)
M (k) via the (leading order) Euler–Maclarin formula to

∫
dk kδ

(2)
M (k) which might

ultimately explain why on the real axis the sum over channels is so small. For definite conclusions though it will be
necessary to investigate the next-to-leading orders.
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same divergences. This is a major improvement over existing formalisms: one does not have
to deal with problems that originate from non-vanishing structures at spatial infinity, but still
one knows exactly what to add in to implement the renormalization conditions known from
perturbation theory. In these conference proceedings, we have focused on a pathological case
where the ultimate object of interest does not strictly speaking exist (as it is UV divergent); but
the apparent convergence of the vacuum polarization diagram in the phase shift formulation
was important to understand. This (erroneous) convergence only occurs when formulating
the vacuum polarization energy in terms of scattering data for real momenta. Analytically
continuing to the imaginary axis yields the UV structure that is consistent with the analysis
of the Feynman diagrams without any further subtleties like ordering of limits. Though this
favours the formulation in terms of imaginary momenta it contains drawbacks that we did not
go into—one needs to sum a lot more channels and it may pose challenges for fermions.
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